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Entropy of the Dirac Field in Schwarzschild–
de Sitter Space-Time via the Membrane Model
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There are two event horizons in Schwarzschild–de Sitter space-time, a black
hole horizon and a cosmological horizon. They have different temperatures. The
radiation between them is of course not in thermal equilibrium. According to the
membrane model suggested by us, the two horizons can be thought of as two
independent thermodynamic systems in equilibrium. Their Dirac field entropies
are calculated via a membrane model. The result shows that the entropy of the
Dirac field is proportional to the sum of the areas of the two event horizons. If
we choose the same cutoff as that of Klein–Gordon field, the entropy of the
Dirac field is 3 1–2 times that of Klein–Gordon field. This agrees with previous
results.

1. INTRODUCTION

The entropy of a black hole is proportional to the area of its event
horizon [3, 5, 8]. The origin of black hole entropy remains a fascinating
problem. ’t Hooft [2] presented a “brick wall” model that can be used to
compute the black hole entropy. Various work followed that calculated black
hole entropy via this model [4, 6, 10].

However, the entropy of the Dirac field in Schwarzschild–de Sitter (SD)
space-time has not been calculated via the brick wall model because, unlike
ordinary stationary space-time, there are two event horizons in SD space-
time, which have different temperatures [9]. The radiation between them is
of course not in equilibrium, and thus we cannot take the brick wall model,
which is based on equilibrium statistical physics. In the membrane model
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the entropy of the black hole comes from the entropy of a thin layer of
radiation [1]. It does not matter whether the two event horizons have the
same temperature or not and whether their distance is large enough or not.
Therefore we can regard the two horizons as two independent thermodynamic
systems in equilibrium and calculate the entropy of the Dirac field via the
membrane model. Our result agrees with previous results [7].

2. DIRAC EQUATION IN SCHWARZSCHILD–DE SITTER
SPACE-TIME

The Dirac equation in curved space-time is given by

(D 1 « 2 r)F1 1 (d 1 p 2 a)F2 5
i

!2
m0G1

(D 1 « 2 r)F1 1 (d 1 p 2 a)F2 5
i

!2
m0G1

(D 1 «* 2 r*)G2 1 (d 1 p* 2 a*)G1 5
i

!2
m0F1 (1)

(D8 1 m* 2 g*)G1 1 (d 1 b* 2 t*)G2 5
i

!2
m0F1

where m0 is the mass of particle, F1, F2, G1, and G2 are four components of
the wave function, D, D8, d, and d are ordinary differential operators, and
a, b, g, d, etc., are spin coefficients. Their relation to the null tetrad is

a 5 1–2 (lm;nnmmn 2 mm;nmmmn)

b 5 1–2 (lm;nnmmn 2 mm;nmmmn)

r 5 lm;nmmmn

p 5 2nm;nmmln

with

D 5 lm­m

D8 5 nm­m

d 5 mm­m

d 5 m­m (2)
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and

g 5 1–2 (lm;nnmnn 2 mm;nmmnn)

e 5 1–2 (lm;nnmln 2 mm;nmmln)

m 5 2nm;nmmmn

t5 2lm;n mmnn

The null tetrad satisfies the following equations:

lmnm 5 2mmmm 5 1

lmlm 5 nmnm 5 mmmm 5 mmmm 5 0

lmmm 5 lmmm 5 nmmm 5 nmmm 5 0

gmn 5 lmnn 1 nmln 1 mmmn 2 mmmn (3)

The line element of the SD space-time is

ds2 5 (1 2 2M/r 2 1–3 lr 2) dt2

2 (1 2 2M/r 2 1–3 lr 2)21 dr 2 2 r 2 dV2 (4)

We choose the null tetrad as follows:

lm 5
1
D

(r 2, D, 0,0)

nm 5
1

2r 2 (r 2, 2 D, 0, 0)

mm 5
1

!2r 10, 0, 1,
i

sin u2
mm 5

1

!2r 10, 0, 1, 2
i

sin u2 (5)

where D 5 r 2 2 2Mr 2 1–3 lr 4. In view of the symmetry of space-time, let
the four components of the wave function be

F1 5 e2iEt eimf r 21f1(r, u)

F2 5 e2iEt eimf f2(r, u)

G1 5 e2iEt eimf g1(r, u)

G2 5 e2iEt eimf r 21g2(r, u) (6)
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Then Eqs. (1) become

D0 f1 1
1
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1/2 f2 5
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!2
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DD1
1/2 f2 2 !2L1/2 f1 5 2 !2im0rg2 (7)

D0g2 2
1
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L1/2g1 5

1

!2
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DD1
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where

Dn 5 ­r 2 iE
r 2
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r 2 M 2
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D1
n 5 ­r 1 iE

r 2

D
1 2n

r 2 M 2
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L1
n 5 ­u 1

m
sin u

1 n ctg u

Ln 5 ­u 2
m

sin u
1 n ctg u

To get the decoupling equations with regard to R61/2, and U61/2, we
suppose that

f1(r, u) 5 R21/2(r)U21/2(u)

f2(r, u) 5 R11/2(r)U11/2(u) (9)

g1(r, u) 5 R11/2(r)U21/2(u)

g2(r, u) 5 R21/2(r)U11/2(u)

For simplicity we put m0 zero, so we get

DD1
1/2 D0R21/2 5 l(l 1 1)R21/2

D0DD1
1/2R11/2 5 l(l 1 1)R11/2 (10)

L1/2L1
1/2U11/2 5 2l(l 1 1)U11/2

L1
1/2L1/2U21/2 5 2l(l 1 1)U21/2



Dirac Field Entropy in Schwarzschild–de Sitter Space-Time 2225

Expandings Eqs. (10), we obtain the radial equations as follows:

2D
d 2R21/2

dr 2 2 1r 2 M 2
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3

lr 32 dR21/2

dr
2

E 2r 4

D
R21/2
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2
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lr 32
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F 1
sin u

d
du

sin u
d
du

2
m2

sin2u
1 l(l 1 1)GU61/2

5 2F1
4

ctg2u 7
m cos u

sin2u
2

1
2 sin2uGU61/2 (13)

In this paper only the radial equations (11) and (12) are considered.

3. THE ENTROPY OF THE DIRAC FIELD IN THE
BACKGROUND OF SD SPACE-TIME

There are four components in the wave function of the Dirac field. We
can calculate the entropy of each component and then sum them.

The line element of SD space-time is

ds2 5 (1 2 2M/r 2 1–3 lr 2) dt2

2 (1 2 2M/r 2 1–3 lr 2)21 dr 2 2 r 2 dV2 (14)

The equation of the event horizon can be easily obtained from the above
line element,

r 3 1 6M/l 2 3r/l 5 0 (15)

Let r+, rc, and r0 be respectively, the black hole event horizon, the cosmological
event horizon, and a meaningless root; then we can write Eq. (15) as

(r 2 r+) (r 2 r2) (r 2 r0) 5 0 (16)
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The temperatures of the two event horizons are

b21
1 5 T+ 5 ZM 2 1–3 lr 3

1

2pr 2
1

Z (17)

b21
c 5 Tc 5 ZM 2 1–3 lr 3

c

2pr 2
c

Z (18)

First, let us consider the case of the black hole event horizon.

3.1. Entropy of f1(r, u) Component

The boundary condition is R6 5 0 when r , r+ 1 h1 or r . r+ 1 2h1,
where h1 À r+. We use the WKB approximation, i.e., let R21/2 5 eiS1(r), and
put it into (11); the wave number is

k2
1(r, l, v) 5 1dR21/2

dr 2
2

5 11 2
2M
r

2
1
3

lr 22
21

3 F11 2
2M
r

2
1
3

lr 22
21

E 2 2
l(l 1 1)

r 2 G (19)

Considering semiclassical quantum theory, we have for the constraint
imposed on the wave number k

n1p 5 #
r112h1

r11h1

dr k1(r, l, v) (20)

The free energy is given by statistical physics,

b+ f1 5 o
n1,l,m

ln(1 1 e2b1E) (21)

The distribution of the state density is regarded as being continuous. Then
we get

b+ f1 5 # dl (2l 1 1) # dn1 ln(1 1 e2b1E) (22)

Integrating by parts and substituting Eq. (19) for Eq. (20), we find that Eq.
(22) becomes

b+ f1 5 2
2b+

3p #
r112h1

r51h1
11 2

2M
r

2
1
3

lr 22
22

r 2

#
`

0

dE (eb1E 1 1)21E 3 (23)
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When integrating over l the part under the radical sign that is not negative
should be considered. Using the median theorem in calculus and considering
h1 À r+, we get

f1 ' 2
7r 4

1p3

20(r+ 2 rc)2(r+ 2 r0)2l2b4
1

h1

h2
1

(24)

where h1 , h1 , 2h1.
The entropy is given by ensemble theory,

S 5 b2 ­F
­b

(25)

Therefore

S11 5
7p3r 4

1

5b3
1(r+ 2 rc)2(r+ 2 r0)2l2

h1

h2
1

(26)

3.2. Entropy of f2(r, u) Component

Similar to the process of computing the entropy of the f1(r, u) component,
we get the entropy of the f2(r, u) component:

S12 5 S11 (27)

3.3. Entropy of the Black Hole Event Horizon

Since the radial components of g1(r, u) and g2(r, u) are the same as
those of f1(r, u) and f2(r, u), respectively, their entropies are also same. Thus
the total entropy is

S+ 5 S11 1 S12 1 S13 1 S14 5 4S11

5
28p3r 4

1

5b3
1(r+ 2 rc)2(r+ 2 r0)2l2

h1

h2
1

(28)

When we choose

h1

h2
1

5 90b+ (29)

we find that the entropy of the Dirac field is 3 1–2 times that of the Klein–Gordon
field, i.e.,

S+ 5
7
2

1
4

A+ (30)

The proof is given in Section 4.
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Now we give the entropy of the cosmological event horizon.
The boundary condition is R6 5 0 when r , rc 2 2h2 or r . rc 2 h2,

where h2 À rc. Entirely as in the case of a black hole, the entropy of the
cosmological event horizon can be derived, and is

Sc 5
28p3r 4

1

5b3
c(r+ 2 rc)2(rc 2 r0)2l2

h2

h2
2

(31)

When we choose

h2

h2
2

5 90bc (32)

we find the entropy of the Dirac field to be 3 1–2 times that of the Klein–Gordon
field, i.e.,

Sc 5
7
2

1
4

Ac (33)

The proof is given in Section 4.
Now we obtain the total entropy of the Dirac field in the background

of SD space-time as,

S 5 S+ 1 Sc 5
7
2

1
4

A (34)

where A is total area of the two horizons.

4. PROOF OF EQUATION (30)

Since the proof of Eq. (33) is similar to that of Eq. (30), we give the
proof of Eq. (30) only. Putting Eqs. (17) and (29) into (28), we obtain

S+ 5 4pr 2
1

(r 3
1 2 (3/l)M )2

r 2
1(r+ 2 rc)2(r+ 2 r0)2

7
2

(35)

The relations between the roots and the coefficients in Eq. (16) are

r+ 1 rc 1 r0 5 0 (36)

r+rcr0 5 2
6
l

M (37)

r+rc 1 rcr0 1 r0r+ 5 2
3
l

(38)
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By expanding the denominator of Eq. (35), we get

[r 3
1 2 (rc 1 r0)r 2

1 1 r+rcr0]2 (39)

Putting Eqs. (36) and (37) into (39), we find that Eq. (40) becomes

41r 3
1 2

3
l

M2
2

(40)

Substituting Eq. (40) into Eq. (39) gives the black hole the entropy,

S+ 5
7
2

1
4

A+ (41)

Since the entropy of the Klein–Gordon field is one fourth the area of
the event horizon, the the entropy of the Dirac field is 3 1–2 times that of the
Klein–Gordon field.

5. DISCUSSION

We take the black hole event horizon and the cosmological event horizon
as two independent thermodynamic systems and calculate the entropy of the
Dirac field via the membrane model. The entropy is proportional to the total
area. This is consistent with previous results. ones. Hence the idea of that
black hole entropy comes from the vicinity of the event horizon has some
plausibility.
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